Innovative processes for electropolishing of medical devices made of stainless steels.
نویسندگان
چکیده
Currently, many medical devices are made of implantable metals such as 316LVM stainless steel. Electropolishing is a common process to obtain a smooth surface, free of contaminants and more passive, which allows for minimizing the foreign body response and cell adhesion. However, polishing of small implants with a highly complicated geometry and nonuniform metallurgy might result in unsatisfactory results. The objective of this work was to develop an electropolishing process effective for complex metallic implants such as artificial heart valve frames and miniature glaucoma implants. Polishing in an ultrasonic bath and pulsed voltage polishing processes were studied and compared to the standard ASTM process. Current-voltage curves were constructed for different solutions and bath temperatures. The polished parts were evaluated by stereomicroscopy, optical microscopy, atomic force microscopy, noncontact surface profilometry, and X-ray diffraction. Pulse polishing was found useful in eliminating the erosion effects of gas bubbles in solution. Electropolishing in an ultrasonic bath was found useful when a rough, patterned surface is needed, e.g. for osseointegration purposes. Preliminary animal studies followed by histopathology indicated that the polished surfaces stimulated only a moderate body reaction, as desired in such applications. The pronounced dependence of the measured roughness values on both the measurement technique and scanned area should inspire the preparation of a new test-method standard.
منابع مشابه
Highlights of Magnetoelectropolishing
*Correspondence: Tadeusz Hryniewicz and Krzysztof Rokosz, Division of Surface Electrochemistry, Koszalin University of Technology, Raclawicka 15-17, Koszalin PL 75-620, Poland e-mail: tadeusz.hryniewicz@ tu.koszalin.pl; [email protected] The research work has been concerned on the studies and development of electrochemical polishing in the magnetic field magnetoelectropolishing (MEP) in com...
متن کاملIMPROVING PITTING CORROSION OF 304 STAINLESS STEEL BY ELECTROPOLISHING TECHNIQUE
Several surface modification techniques such as ion implantation, surface laser melting, have been employed to improve pitting corrosion resistance of stainless steel. Electropolishing is a technique in which the surface roughness is eliminated through a selective electrochemical dissolution. The effect of electropolishing on pitting corrosion of 304 stainless steel (SS) was investigated employ...
متن کاملEffects of Surface Treatment on Corrosion Resistance of 304L and 316L Stainless Steel Implants in Hank’s Solution
The enormous demands for metal implant have given rise to a search for cheap material with good bio-tolerability and resistance to corrosion. Although stainless steel has these properties and is widely used for this purpose, its long term application is still a concern. The corrosion resistance of stainless steel depends on the passive layer. Herein, chemical surface treatment, including passiv...
متن کاملSuper Plasticity of /α Duplex Stainless Steels
In this paper the studies of the two-phase super Plasticity stainless steels is studied. The aim of this study obtained the suitable criteria to thermo-mechanical treatment condition for decrease the microstructure (grain size) and super plasticity property in two-phase stainless steels. Also here we want to show the appropriate ranges of temperature and strain rate used in the process super pl...
متن کاملBiomedical Applications of Titanium and its Alloys
Materials used for biomedical applications cover a wide spectrum and must exhibit specific properties. The most important property of materials used for fabricating implants is biocompatibility, followed by corrosion resistance. The main metallic biomaterials are stainless steels, cobalt alloy, and titanium and titanium alloys. Stainless steel was the first metallic biomaterial used successfull...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2007